Cours sur les fonctions convexes avec preuves

Dans tout le chapitre I désigne un intervalle non réduit à un point.

1 Définitions

Définition 1 (Paramétrisation d'un segment) Soit A et B deux points d'un \mathbb{R} -espace vectoriel E. On appelle segment [AB] l'ensemble :

$$[AB] = \{A + t(B - A) \mid t \in [0, 1]\} = \{(1 - t)A + tB \mid t \in [0, 1]\}.$$

En particulier,

• $si\ a\ et\ b\ sont\ deux\ r\'eels,\ avec\ a\leqslant b,\ on\ a$

$$[a,b] = \{a + t(b-a) \mid t \in [0,1]\} = \{(1-t)a + tb \mid t \in [0,1]\}.$$

• $si\ A = (x_A, y_A)\ et\ B = (x_B, y_B)\ sont\ deux\ points\ de\ \mathbb{R}^2$, on a:

$$[AB] = \{((1-t)x_A + tx_B, (1-t)y_A + ty_B) \mid t \in [0,1]\}.$$

Remarque: Un point M appartient au segment [AB], si et seulement si, il existe $t \in [0,1]$ tel que M = (1-t)A + tB. Le point M peut alors s'interpréter comme la moyenne des points A et B pondérés par les coefficients (1-t) et t (on parle de barycentre). Lorsque t=0, le point M est le point A, lorsque $t=\frac{1}{2}$, M est le milieu de [AB], et si t=1, on obtient le point B. Enfin, si par exemple $t=\frac{1}{3}$, le point M vérifie $M=A+\frac{1}{3}(B-A)$, c'est-à-dire $\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}$, et donc M se situe au premier tiers du segment [AB]. Le segment [AB] est donc l'ensemble de toutes les moyennes à coefficients positifs des points A et B.

Définition-Proposition 2 (Inégalité des cordes) Une fonction $f: I \to \mathbb{R}$ est dite convexe si tout arc de la courbe de f est en-dessous de la corde, c'est-à-dire si

$$\forall (a,b) \in I^2, \ \forall t \in [0,1], \quad f(ta + (1-t)b) \leq tf(a) + (1-t)f(b).$$

La fonction f est dite concave si - f est convexe.

Preuve: on considère les points A(a, f(a)) et B(b, f(b)) avec $a \leq b$. Soit $t \in [0, 1]$ et $x_t = ta + (1 - t)b$. On considère le point $M_t(x_t, f(x_t))$ de la courbe et le point N_t de la corde [AB] d'abscisse x_t . Alors l'ordonnée de N_t vaut $y_c = tf(a) + (1 - t)f(b)$.

Dire que l'arc de courbe \widehat{AB} est en dessous de la corde [AB] équivaut à dire que pour $t \in [0, 1]$, le point M_t est en dessous de N_t , ce qui équivaut à dire que pour $t \in [0, 1]$ l'ordonnée $f(x_t)$ de M_t est inférieure ou égale à y_t l'ordonnée de N_t , ce qui équivaut à dire que pour tout $t \in [0, 1]$, $f(ta + (1 - t)b) \leq tf(a) + (1 - t)f(b)$.

Exemple:

• La fonction valeur absolue est convexe sur \mathbb{R} .

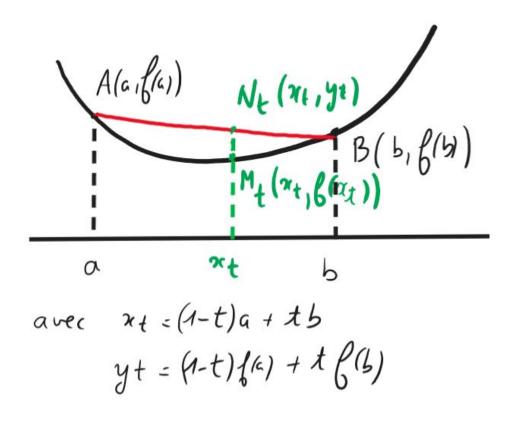


Figure 1 – Courbe d'une fonction convexe

• Les fonctions affines sont à la fois convexes et concaves.

Exercice 1 En «observant» que exp est convexe sur \mathbb{R} , démontrer que pour tout a et b dans \mathbb{R} , on a $e^{\frac{a+b}{2}} \leqslant \frac{e^a+e^b}{2}$.

Remarque: Attention, le contraire de convexe, n'est pas concave.

Remarque: La droite (AB) a pour pente $\frac{f(b)-f(a)}{b-a}$, donc pour équation cartésienne $y=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)$. En traduisant que $f(x_t) \leq y_t$, on obtient alors un nouvel énoncé pour la définition de fonction convexe.

Proposition 3 (Inégalité des cordes, «version cartésienne») Soit $f: I \to \mathbb{R}$. Alors f est convexe si et seulement si pour tout $a, b \in I$ avec a < b, on a

$$\forall x \in [a, b], f(x) \leqslant \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

Exemple: On «observe» que sin est concave sur $[0, \frac{\pi}{2}]$. On en déduit que $\forall x \in [0, \frac{\pi}{2}]$, sin $x \geqslant \frac{2}{\pi}x$.

2 Régularité d'une fonction convexe

Proposition 4 Soit $f: I \to \mathbb{R}$. Les deux propositions sont équivalentes :

1. La fonction f est convexe

2. Pour tout $a \in I$, la fonction «pente»

$$p_a: x \mapsto \frac{f(x) - f(a)}{x - a}$$

est croissante sur $I \setminus \{a\}$.

Preuve:

- 1. Supposons f convexe. Soit $a \in I$ et x < y dans I. On note A, X, Y les points de la courbe de f d'abscisses respectives a, x, y.
 - (a) Cas où a < x < y. Comme f est convexe, d'après l'inégalité des cordes (version cartésienne), le point X est en dessous de la corde [AY], donc $f(x) \leqslant \frac{f(y) f(a)}{y a} (x a) + f(a)$, ce qui donne $\frac{f(x) f(a)}{y a} \leqslant \frac{f(y) f(a)}{x a}$ car x a > 0, c'est-à-dire $p_a(x) \leqslant p_a(y)$. Nous avons ainsi prouver que la pente de la droite (AX) est inférieure à celle de (AY) (on note $p(AX) \leqslant p(AY)$).
 - (b) Cas où x < y < a. Comme f est convexe, $f(y) \leqslant \frac{f(x) f(a)}{x a}(y a) + f(a)$ et donc comme y a < 0, on a $\frac{f(y) f(a)}{y a} \geqslant \frac{f(x) f(a)}{x a}$ et donc $p_a(y) \geqslant p_a(x)$. Nous avons ainsi prouver que la pente de la droite (YA) est supérieure à celle de (AX) (on note $p(YA) \geqslant p(AX)$).
 - (c) Cas où x < a < y. D'après les deux cas précédents, $p(AY) \ge p(XY) \ge p(XA)$, ce qui implique $p_a(y) \ge p_a(x)$.

Dans les trois cas x < y implique que $p_a(x) \le p_a(y)$, et donc p_a est croissante sur I.

2. Supposons que pour tout $a \in I$, la fonction p_a est croissante. Soit a < b dans I et $x \in]a, b[$. Comme la fonction p_a est croissante, on a $p_a(x) \leq p_a(b)$, donc $\frac{f(x)-f(a)}{x-a} \geqslant \frac{f(b)-f(a)}{b-a}$ et donc comme b-a>0, on a $f(x) \leq \frac{f(b)-f(a)}{b-a}(x-a)+f(a)$, donc f est convexe sur I.

Remarque: Nous venons en fait de démontrer l'inégalité des trois pentes.

Proposition 5 (Inégalité des trois pentes) Soit $f: I \to \mathbb{R}$. La fonction f est convexe sur I, si et seulement si, pour tout a, b, c de I tels que a < b < c, on a l'inégalité des trois pentes suivante :

$$\frac{f(b) - f(a)}{b - a} \leqslant \frac{f(c) - f(a)}{c - a} \leqslant \frac{f(c) - f(b)}{c - b}.$$

Corollaire 6 (Régularité d'une fonction convexe) $Si \ f : I \to \mathbb{R}$ est convexe, alors :

- f est dérivable à gauche et à droite en tout point intérieur à I
- f est continue en tout point a intérieur à I.

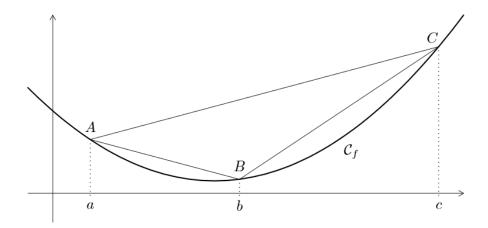


FIGURE 2 – Inégalité des trois pentes

Preuve: Si a est un point intérieur à I, il existe r>0 tel que $[a-r,a+r]\subset I$. Mais alors la fonction pente $p_a: x\mapsto \frac{f(x)-f(a)}{x-a}$ est croissante sur [a-r,a[et majorée par $p_a(a+r)$, donc admet une limite finie en a à gauche, d'après le théorème de la limite monotone. De même p_a est croissante sur [a,a+r], minorée par $p_a(a-r)$, donc admet une limite finie en a à droite. Nous venons de montrer que f est dérivable à gauche et à droite en a. Elle est donc aussi continue à gauche et à droite en a, ce qui implique que $\lim_{a^-} f = f(a)$ et $\lim_{a^+} f = f(a)$ et donc que f est continue en a.

Remarque: La fonction valeur absolue est convexe sur \mathbb{R} , mais n'est pas dérivable en 0. Enfin, si a n'est pas intérieur, la fonction f n'est pas forcément continue en a. Penser à la fonction partie entière sur [0,1] qui n'est pas continue en 1.

3 Cas des fonctions dérivables

Théorème 7 Soit $f: I \to \mathbb{R}$ dérivable. Alors

- 1. la fonction f est convexe ssi sa dérivée f' est croissante.
- 2. la fonction f est concave ssi sa dérivée f' est décroissante.

Preuve:

• On suppose f convexe. Soit a < x < b dans I. On veut montrer que $f'(a) \le f'(b)$. D'après l'inégalité des trois pentes,

$$\frac{f(x) - f(a)}{x - a} \leqslant \frac{f(b) - f(a)}{b - a} \leqslant \frac{f(x) - f(b)}{x - b}.$$

Avec l'inégalité de gauche, en faisant tendre x vers a, on obtient $f'(a) \leqslant \frac{f(b)-f(a)}{b-a}$ car f est dérivable en a. De même avec l'inégalité de droite et en faisant tendre x vers b, on obtient $\frac{f(b)-f(a)}{b-a} \leqslant f'(b)$. On a donc en particulier $f'(a) \leqslant f'(b)$.

• On suppose que f' est croissante. Soit a < b dans I. On pose $k = \frac{f(b) - f(a)}{b - a}$ et pour $x \in [a, b], \ \phi(x) = f(x) - (k(x - a) + f(a))$. La fonction ϕ est continue sur [a, b], dérivable sur [a, b] et on a $\phi(a) = \phi(b) = 0$, donc d'après Rolle, il existe $c \in [a, b]$ tel que $\phi'(c) = 0$. Or $\phi' = f' - k$, donc ϕ' est croissante sur I, donc $\phi' \le 0$ sur [a, c] et $\phi' \ge 0$ sur [c, b]. Elle admet donc un minimum en c, et comme elle s'annule en a et b, on est sûr que pour tout $x \in [a, b], \ \phi(x) \le 0$, donc $f(x) \le k(x - a) + f(a)$. On a bien f convexe.

Exercice 2 Démontrer que pour tous réels a et b, on a $(a+b)^4 \le 8(a^4+b^4)$.

Remarque: Si de plus f est deux fois dérivable, on a donc f convexe ssi f'' est positive.

Proposition 8 (Inégalité des tangentes) Soit $f: I \to \mathbb{R}$ une fonction convexe et dérivable. Alors la courbe de f est au dessus de toutes ses tangentes.

 ${\it Exemple:}$ Cette proposition permet d'obtenir des inégalités classiques et surtout de les visualiser :

1. $\forall x > 0$, $\ln x \le x - 1$ 2. $\forall x \in \mathbb{R}$, $e^x \ge x + 1$. 3. $\forall x \ge 0$, $\sin x \le x$

Définition-Proposition 9 (Point d'inflexion) Soit $f: I \to \mathbb{R}$ et a un point intérieur à I. On dit que a est un point d'inflexion si f est concave au voisinage de a à gauche et convexe au voisinage de a à droite (ou l'inverse). Si f est deux-fois dérivable, a est un point d'inflexion ssi f'' s'annule en a et change de signe en a.

Exercice 3 On pose $f(x) = \frac{\ln(1-2x)}{1+x}$. Calculer le DL_3 en 0 de f, en déduire que 0 est un point d'inflexion.

Proposition 10 (Inégalité de Jensen) Soit $f: I \to \mathbb{R}$ convexe. Soit a_1, \ldots, a_n des éléments de I et t_1, \ldots, t_n des réels positifs tels que $t_1 + \cdots + t_n = 1$. Alors

$$f(t_1a_1+\cdots+t_na_n)\leqslant t_1f(a_1)+\cdots+t_nf(a_n).$$

Remarque: Le réel $t_1a_1 + \cdots + t_na_n$ est la moyenne des réels a_1, \ldots, a_n pondérés par les coefficients t_1, \ldots, t_n

Preuve: Par récurrence sur n. C'est vrai pour n = 1, et pour n = 2

Supposons que c'est vrai au rang $n \in \mathbb{N}^*$. Soit a_1, \ldots, a_{n+1} des éléments de I et t_1, \ldots, t_{n+1} des réels positifs tels que $t_1 + \cdots + t_{n+1} = 1$. L'idée est qu'on peut calculer des moyennes par paquets (associativité de la moyenne). Par exemple, pour calculer la moyenne d'une classe où il y a p garçons et q filles, on peut calculer la moyenne des garçons m_g et des filles m_f puis faire la moyenne pondérée de ces deux moyennes $\frac{pm_g+qm_f}{p+q}$.

On va ainsi calculer la moyenne $t_1a_1 + \cdots + t_na_n + t_{n+1}a_{n+1}$ en utilisant deux paquets :

• les nombres a_1, \ldots, a_n , dont la moyenne pondérée est $\frac{t_1a_1+\cdots+t_na_n}{t_1+\cdots+t_n}$ avec un poids total de $t_1+\cdots+t_n$

• le nombre a_{n+1} avec le poids t_{n+1}

On a donc:

$$f(t_{1}a_{1} + \dots + t_{n}a_{n} + t_{n+1}a_{n+1})$$

$$= f\left((t_{1} + \dots + t_{n})\left(\frac{t_{1}}{t_{1} + \dots + t_{n}}a_{1} + \dots + \frac{t_{n}}{t_{1} + \dots + t_{n}}a_{n}\right) + t_{n+1}a_{n+1}\right)$$

$$\leqslant (t_{1} + \dots + t_{n})f\left(\frac{t_{1}}{t_{1} + \dots + t_{n}}a_{1} + \dots + \frac{t_{n}}{t_{1} + \dots + t_{n}}a_{n}\right) + t_{n+1}f(a_{n+1}) \text{ car } f \text{ est convexe}$$

$$\leqslant (t_{1} + \dots + t_{n})\left(\frac{t_{1}}{t_{1} + \dots + t_{n}}f(a_{1}) + \dots + \frac{t_{n}}{t_{1} + \dots + t_{n}}f(a_{n})\right) + t_{n+1}f(a_{n+1}) \text{ d'après } HR(n)$$

$$= t_{1}a_{1} + \dots + t_{n+1}a_{n+1}$$

Exercice 4 (Inégalité arithmético-géométrique) Soit a_1, \ldots, a_n dans $]0, +\infty[$. Démontrer que $(a_1 a_2 \ldots a_n)^{\frac{1}{n}} \leqslant \frac{a_1 + \cdots + a_n}{n}$.