Un nouvel outil pour les limites : les équivalents

Définitions .1

Définition 1 On dit qu'une fonction f est équivalente à une fonction g au voisinage de a, on note $f(x) \sim_a g(x)$ (a pouvant être aussi $\pm \infty$), si g ne s'annule pas au voisinage de a privé de a et si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1.$$

Remarque: si $\lim_a \frac{f}{g} = +\infty$, on dit que f est prépondérante devant g. Si $\lim_a \frac{f}{g} = 0$, on dit que f est négligeable devant g. C'est équivalent à dire que g est prépondérante devant f.

Exercice 1 Démontrer les équivalents suivants :

1.
$$3x + 5 \sim_{+\infty} 3x$$

2.
$$3x + 5 \sim_0 5$$

3.
$$5x^2 - 3x + 1 \sim_{+\infty} 5x^2$$

1.
$$3x + 5 \sim_{+\infty} 3x$$
 2. $3x + 5 \sim_{0} 5$ 3. $5x^{2} - 3x + 1 \sim_{+\infty} 5x^{2}$ 4. $5x^{2} - 3x + 2 \ln x \sim_{+\infty} 5x^{2}$ 5. $5x^{2} - 3x + 2 \ln x \sim_{0} 2 \ln x$ 6. $e^{-x} + \sqrt{x} \sim_{+\infty} \sqrt{x}$

5.
$$5x^2 - 3x + 2 \ln x \sim_0 2 \ln x$$

6.
$$e^{-x} + \sqrt{x} \sim_{+\infty} \sqrt{x}$$

Équivalents usuels .2

Proposition 2 (Cas des fonctions polynomiales) On a :

- au voisinage de ±∞, un polynôme est équivalent à son terme de plus haut degré.
- au voisinage de 0, un polynôme est équivalent à son terme de plus bas degré.

Proposition 3 (Équivalents usuels en 0) Si une fonction f est dérivable en a avec $f'(a) \neq a$ 0, alors

$$f(x) - f(a) \sim_{x \to a} f'(a)(x - a).$$

On en déduit les équivalents usuels suivants au voisinage de 0:

$$\ln(1+x) \sim_0 x$$
, $\sin x \sim_0 x$, $e^x - 1 \sim_0 x$, $(1+x)^\alpha - 1 \sim_0 \alpha x$.

.3 **Propriétés**

Proposition 4 (Relation d'équivalence) La relation «être équivalent en a» est un exemple de relation d'équivalence :

- réflexive : $f \sim_a f$
- symétrique : si $f \sim_a g$, alors $g \sim_a f$.
- transitive: si $f \sim_a g$ et $g \sim_a h$, alors $f \sim_a h$.

Proposition 5 Si $f \sim_a g$ et que f admet une limite (finie ou infinie) en a, alors g admet une limite en a et $\lim_a f = \lim_a g$.

Remarque: la réciproque est fausse car x et x^2 tendent vers $+\infty$ en $+\infty$ mais x^2 n'est pas équivalent à x en $+\infty$.

Proposition 6 (Produit et quotient d'équivalents) On peut faire des produits et des quotients d'équivalents : si $f \sim_a g$ et $u \sim_a v$, alors $f \times u \sim_a g \times v$ et $\frac{f}{u} \sim_a \frac{g}{v}$.

Remarque: c'est faux pour les sommes ou les composés. Par exemple, en 0, on a $e^x \sim 1$ et $-1 \sim -1$, si on somme les équivalents, on a $e^x - 1 \sim 0$ ce qui est faux.

De même, on a en $+\infty$, $x \sim x+1$, si on compose par exp, on obtient $\exp(x+1) \sim \exp(x)$, ce qui est faux car $\frac{\mathrm{e}^{x+1}}{\mathrm{e}^x} = \mathrm{e}$ ne tend pas vers 1.

.4 Quelques exercices supplémentaires

Exercice 2 Déterminer les limites suivantes :

1.
$$\frac{5x^3 - 8x^2 + 3}{(x-2)(3x^2 - 5x + 3)}$$
 en $+\infty$ 2. $\frac{2x^5 - 3x + \ln x}{x^5 - 2x + 5}$ en 0 3. $\frac{\sqrt{1+x^2} - 1}{3(x-5x^3)\sin x}$ en 0

Exercice 3 Donner un équivalent simple en a de

1.
$$\sqrt{1+x^2}-1$$
, $a=0$ 2. $\sqrt{1+\frac{1}{x}}-1$, $a=0$ 3. $\sqrt{x+1}-\sqrt{x}$, $a=+\infty$

Exercice 4 Étudier la dérivabilité des fonctions suivantes en a:

1.
$$f(x) = \ln(1 + x\sqrt{x})$$
 en $a = 0$ 2. $f(x) = \sqrt{\ln x}$ en $a = 1$.

Exercice 5 Déterminer la nature de la branche infinie en $+\infty$ de $f(x) = \sqrt{x^2 - 1}$.

Exercice 6 On considère la fonction f définie par $f(x) = x^{\frac{x}{1-x}}$. Calculer les limites de f en a) $+\infty$ b) 0 c) 1.

Exercice 7 (Calculs de limites, parfois délicates) Calculer les limites suivantes en $+\infty$:

1.
$$\exp(-\ln(\ln x))(\ln x)^{12}$$
 2. $x^2 e^{-x}(\ln x)^3$ 3. $x \ln(1+x) - (x+1) \ln x$

4.
$$\sqrt{x+1} - \sqrt{x}$$
 5. $e^{\cos x} \sin \frac{1}{x}$ 6. $\left(\frac{\ln x}{x}\right)^{\frac{1}{x}}$

Pour la dernière limite, on pourra déterminer un équivalent en $+\infty$ de $\ln(\ln x) - \ln x$.

Exercice 8 (Une étude de fonctions) On note f la fonction définie sur $]0,+\infty[$ par

$$f(x) = \left(1 + \frac{1}{x}\right)^x.$$

- 1. Démontrer que pour tout réel t > 0, on a $\ln t \ge 1 \frac{1}{t}$.
- 2. Déterminer les variations de f (on pourra utiliser l'inégalité précédente).
- 3. Démontrer que pour X au voisinage de $+\infty$, on a $\ln(1+X) \sim \ln X$.
- 4. En déduire la limite de f en 0.
- 5. Déterminer la limite de f en $+\infty$, puis dresser le tableau de variations de f.