Année scolaire 2024-2025

MPSI

Devoir surveillé de MATHÉMATIQUES n°6 Samedi 1 février 2025

Durée de l'épreuve : 4 heures de 8h à 12h00 Professeur : M. de Saint Julien Les calculatrices sont interdites. Les copies illisibles ou mal présentées seront pénalisées.

I Exercices

Exercice 1 (Puissances *n*-ièmes d'une matrice) On pose

$$A = \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}.$$

- **1.** On pose $N = A 2I_2$. Calculer N^2 , en déduire une expression de A^n pour tout $n \in \mathbb{N}^*$.
- 2. Soit $n \in \mathbb{N}^*$. Déterminer le reste de la division euclidienne du polynôme X^n par le polynôme $P = X^2 4X + 4$.
- **3.** En déduire une autre méthode de calcul de A^n .

Exercice 2 (Matrices triangulaires strictes Vs Matrices nilpotentes) On rappelle qu'une matrice $N \in \mathcal{M}_n(\mathbb{K})$ est nilpotente s'il existe un entier $p \in \mathbb{N}^*$ tel que $N^p = 0$.

- 1. On pose $Q = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$. Justifier que Q est inversible et donner son inverse.
- 2. Soit $N \in \mathcal{M}_n(\mathbb{K})$ nilpotente et $P \in \mathcal{M}_n(\mathbb{K})$ inversible. Démontrer que PNP^{-1} est nilpotente.
- 3. En déduire un exemple de matrice nilpotente M en taille 2 qui n'est pas triangulaire.

Exercice 3 (Questions en vrac)

- 1. Donner la décomposition en facteurs irréductibles sur \mathbb{R} et sur \mathbb{C} de $P=X^3+2X+3$.
- 2. Déterminer $P \in \mathbb{R}[X]$ de degré 5 sachant que 1 est racine de P, que i est racine double de P et que P(2) = 100.

II Problème : calcul de zeta de deux

Le but de ce problème est de déterminer la limite de la suite $(s_n)_n$ définie pour $n \ge 1$ par :

$$s_n = \sum_{k=1}^n \frac{1}{k^2}.$$

On note cotan la fonction définie sur $]0,\pi[$ par

$$\cot x(x) = \frac{\cos x}{\sin x}.$$

Si $x \in]0, \pi[$, on note aussi $\cot^2(x) = (\cot(x))^2$.

I. Étude préliminaire d'un polynôme

Soit $n \ge 2$ un entier. On pose $P = (X+1)^n - (X-1)^n$ et

$$\forall k \in [1, n-1], \quad \gamma_k = -i \cot \left(\frac{k\pi}{n}\right).$$

- 1. Démontrer que la fonction cotan est strictement monotone sur $]0,\pi[$.
- 2. Démontrer que :

$$\forall k \in [1, n-1], \quad \frac{e^{\frac{i2k\pi}{n}} + 1}{e^{\frac{i2k\pi}{n}} - 1} = \gamma_k.$$

En déduire que les racines complexes de P sont les nombres γ_k pour $k \in [1, n-1]$.

- 3. Déterminer le degré de P et préciser son coefficient dominant.
- 4. En déduire la décomposition de P en facteurs irréductibles sur \mathbb{C} .

On considère les deux fonctions symétriques élémentaires suivantes :

$$\sigma_1 = \sum_{k=1}^{n-1} \gamma_k$$
 et $\sigma_2 = \sum_{1 \le p < q \le n-1} \gamma_p \gamma_q$

qui sont respectivement la somme des racines de P et la somme des produits de 2 racines distinctes de P (sans répétition).

- 5. À l'aide des relations coefficients/racines, donner la valeur de σ_1 et σ_2 .
- **6.** Déterminer une relation entre $\sum_{k=1}^{n-1} \gamma_k^2$ et σ_1 et σ_2 .
- 7. En déduire que

$$\sum_{k=1}^{n-1} \cot^2 \left(\frac{k\pi}{n} \right) = \frac{(n-1)(n-2)}{3}.$$

II. Application

Soit $p \ge 1$ un entier.

- 8. Démontrer par un argument de convexité que pour tout $x \in]0, \frac{\pi}{2}[$, on a $\tan x \geqslant x.$
- 9. En déduire que pour tout $x \in]0, \frac{\pi}{2}[$, on a :

$$\cot^2(x) \leqslant \frac{1}{r^2} \leqslant 1 + \cot^2(x).$$

10. Vérifier que $\forall x \in]0, \pi[, \cot (\pi - x) = -\cot (x),$ en déduire que

$$\sum_{k=1}^{p} \operatorname{cotan}^{2} \left(\frac{k\pi}{2p+1} \right) = \frac{p(2p-1)}{3}.$$

11. Déduire des résultats précédents la limite de la suite (s_n) définie par $s_n = \sum_{k=1}^n \frac{1}{k^2}$.