Année scolaire 2024-2025

MPSI

Corrigé du DS de MATHÉMATIQUES n°7 Samedi 15 mars 2025

Durée de l'épreuve : 4 heures de 8h à 12h00 Professeur : M. de Saint Julien Les calculatrices sont interdites. Les copies illisibles ou mal présentées seront pénalisées.

I Algèbre

Exercice 1 On considère l'ensemble $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}.$

- 1. Démontrer que F est un sous-espace vectoriel de \mathbb{R}^3 . Classique :
- **2.** Déterminer une base de F.

$$(x, y, z) \in F \iff x = -2y - 3z \iff (x, y, z) = (-2y - 3z, y, z) = y(-2, 1, 0) + z(-3, 0, 1)$$

On note u = (-2, 1, 0) et v = (-3, 0, 1). On a montré que la famille $\mathcal{B} = (u, v)$ engendre F. Elle est de plus libre car constituée de deux vecteurs non colinéaires. C'est donc une base de F.

3. L'ensemble $G = \{(x, y, z) \in \mathbb{R}^3 \mid xyz = 0\}$ est-il un sous-espace vectoriel de \mathbb{R}^3 ? Non, car i = (1, 0, 1) et j = (0, 1, 1) sont dans G mais leur somme i + j = (1, 1, 2) n'est pas dans G car ses trois coordonnées sont non nulles.

Exercice 2 (Somme de projecteurs) Soit p et q deux projecteurs d'un \mathbb{K} -espace vectoriel E. On suppose que $p \circ q = q \circ p = 0$.

1. Démontrer que p + q est un projecteur.

Comme p et q commutent, on a par le binôme de Newton, $(p+q)^2 = p^2 + 2p \circ q + q^2 = p + 0 + q = p + q$. Donc p+q est bien un projecteur.

2. Démontrer que $Ker(p+q) = Ker p \cap Ker q$.

Soit $x \in \text{Ker } p \cap \text{Ker } q$. On a donc p(x) = q(x) = 0 donc (p+q)(x) = p(x) + q(x) = 0 ce qui montre que $x \in \text{Ker}(p+q)$. Ainsi $\text{Ker } p \cap \text{Ker } q \subset \text{Ker}(p+q)$.

Réciproquement, soit $x \in \text{Ker}(p+q)$. On doit écrire x comme somme de deux vecteurs dont un dans le noyau de p. On pense donc à écrire $E = \text{Ker } p \oplus \text{Im } p$ car p est un projecteur. Ainsi x = a + b avec $a \in \text{Ker } p$ et $b \in \text{Im } p$. Or on sait que $\text{Im } p \subset \text{Ker } q$ car $q \circ p = 0$ donc $b \in \text{Ker } q$. Ainsi $x \in \text{Ker } p + \text{Ker } q$. D'où l'inclusion réciproque $\text{Ker}(p+q) \subset \text{Ker } p \cap \text{Ker } q$. 3. Démontrer que $\operatorname{Im}(p+q) = \operatorname{Im} p + \operatorname{Im} q$.

Soit $y \in \text{Im}(p+q)$, il existe $x \in E$ tel que y = (p+q)(x) = p(x) + q(x). Ainsi $y \in \text{Im}\, p + \text{Im}\, q$. D'où $\text{Im}(p+q) \subset \text{Im}\, p + \text{Im}\, q$.

Réciproquement, soit $y \in \text{Im } p + \text{Im } q$. Il existe a et b dans E tels que y = p(a) + q(b). Alors

$$(p+q)(p(a)+q(b)) = p(p(a)) + \underbrace{p(q(b))}_{0} + \underbrace{q(p(a))}_{0} + q(q(b)) = p(a) + q(b).$$

Donc y = (p+q)(x) avec x = p(a) + q(b) ce qui montre que $\operatorname{Im} p + \operatorname{Im} q \subset \operatorname{Im}(p+q)$.

- 4. Dans cette question uniquement, on prend $E = \mathbb{R}^2$ et on note (i, j) la base canonique de \mathbb{R}^2 . On pose Δ la droite d'équation y = x.
 - (a) Démontrer que les droites $\mathrm{Vect}\,(i)$ et Δ sont supplémentaires dans \mathbb{R}^2 .

Déjà si $(x, y) \in \text{Vect } (i) \cap \Delta$, on a y = 0 et x = y, donc x = y = 0, donc (x, y) = (0, 0). Ainsi Vect $(i) \cap \Delta = \{0\}$

Soit $(x,y) \in \mathbb{R}^2$. On cherche un réel t tel que $(x,y) = \underbrace{(t,0)}_{\in \text{Vect}\,(i)} + (x-t,y)$ avec $(x-t,y) \in$

 Δ , ce qui équivaut à x - t = y, donc t = x - y.

On a donc montré que $(x,y) = \underbrace{(x-y,0)}_{\in \text{Vect}\,(i)} + \underbrace{(y,y)}_{\in \Delta}$, ce qui montre que $\mathbb{R}^2 = \text{Vect}\,(i) + \Delta$,

et achève la preuve.

- (b) On note q la projection sur la droite des abscisses Vect $\{i\}$, parallèlement à la droite Δ . Déduire de la question précédente, les coordonnées de q(x,y) pour tout $(x,y) \in \mathbb{R}^2$. D'après la décomposition $(x,y) = \underbrace{(x-y,0)}_{\in \text{Vect}(i)} + \underbrace{(y,y)}_{\in \Delta}$, on a q(x,y) = (x-y,0).
- (c) On note p la projection orthogonale sur la droite des ordonnées Vect $\{j\}$. L'endomorphisme p+q est-il un projecteur?

Soit $(x,y) \in \mathbb{R}^2$. On sait que p(x,y) = (0,y), donc (p+q)(x,y) = (x-y,y). Donc (p+q)(1,1) = (0,1) et $(p+q)^2(1,1) = (p+q)(0,1) = (-1,1) \neq (p+q)(1,1)$. Ainsi p+q n'est pas un projecteur.

II Analyse

Exercice 3 (Savez-vous calculer des DL?) Les questions sont indépendantes.

1. Donner le développement limité en 0 à l'ordre 3 de $e^x \cos x$.

$$e^{x} \cos x = (1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + o(x^{3}))(1 - \frac{x^{2}}{2} + o(x^{3}))$$

$$= 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} - \frac{x^{2}}{2} - \frac{x^{3}}{2} + o(x^{3})$$

$$= 1 + x - \frac{x^{3}}{3} + o(x^{3})$$

2. Déterminer la limite en 0 de la fonction f définie par :

$$f(x) = \frac{x^4 + x^{2020}}{\sin^2 x - x^2}$$

Au voisinage de 0, $\sin^2 x \sim x^2$, donc pour avoir un équivalent de $\sin^2 x - x^2$, il faut un terme de précision supplémentaire dans le DL de $\sin^2 x$. Comme elle est paire, on va chercher son DL_4 : on a (attention à ne pas oublier le double produit)

$$\sin^2(x) = (x - \frac{x^3}{6} + o(x^4))^2 = x^2 - 2x\frac{x^3}{6} + o(x^4) = x^2 - \frac{x^4}{3} + o(x^4)$$

Ainsi par quotient d'équivalents

$$f(x) = \frac{x^4 + x^{2020}}{\sin^2 x - x^2} \sim \frac{x^4}{\frac{-x^4}{3}} = -3.$$

3. On note f la fonction définie sur \mathbb{R}^* par :

$$f(x) = \frac{x}{x + \sin x}.$$

(a) Donner le développement limité de f en 0 à l'ordre 2. On a

$$f(x) = \frac{x}{x + \sin x} = \frac{x}{x + x + \frac{x^3}{6} + o(x^3)} = \frac{1}{2 + \frac{x^2}{6} + o(x^2)}$$
$$= \frac{1}{2(1 + \frac{x^2}{12} + o(x^2))} = \frac{1}{2} \left(1 - \frac{x^2}{12} + o(x^2) \right)$$

(b) En déduire que f se prolonge en une fonction dérivable sur \mathbb{R} . Préciser l'allure de la courbe au voisinage de 0 (position de la courbe par rapport à sa tangente)

La fonction f est dérivable sur \mathbb{R}^* (somme et quotient de fonctions dérivables). On prolonge f en 0 en posant $f(0) = \frac{1}{2}$.

On a alors pour x non nul,

$$\frac{f(x) - f(0)}{x - 0} = \frac{\frac{-x^2}{24} + o(x^2)}{x} \sim \frac{-x}{24}$$

En particulier, ce taux d'accroissement tend vers 0, lorsque x tend vers 0, donc f est dérivable en 0 et f'(0) = 0.

De plus, $f(x) - \frac{1}{2} \sim \frac{-x^2}{24}$ de signe négatif au voisinage de 0. La fonction f admet donc un maximum local en 0.

Exercice 4

1. Démontrer à l'aide de suites que la fonction sin n'admet pas de limite en $+\infty$.

Les suites $u_n = n\pi$ et $v_n = \frac{\pi}{2} + 2n\pi$ tendent vers $+\infty$ mais les suites $\sin u_n = 0$ et $\sin v_n = 1$ n'ont pas la même limite. Donc \sin n'a pas de limite en $+\infty$.

- **2.** On note f la fonction «serpent» définie sur $[0, +\infty[$ par $f(x) = x^2 \cos \frac{1}{x}$ pour $x \neq 0$ et f(0) = 0.
 - (a) Démontrer que f est dérivable sur $[0, +\infty[$. La fonction f est de classe C^1 sur $]0, +\infty[$ par produit et composée. Pour x > 0, on a :

$$\left| \frac{f(x) - f(0)}{x} \right| = \left| x \cos \frac{1}{x} \right| \leqslant x \to_{x \to 0} 0$$

Ainsi f est dérivable en 0 et f'(0) = 0.

(b) Démontrer que f n'est pas de classe C^1 en 0. Pour x > 0, on a

$$f'(x) = 2x\cos\frac{1}{x} + x^2\sin\left(\frac{1}{x}\right) \times \left(\frac{-1}{x^2}\right) = 2x\cos\frac{1}{x} + \sin\left(\frac{1}{x}\right)$$

Si f est de classe C^1 , alors $\lim_{x\to 0} f'(x) = f'(0) = 0$. Comme $\sin\left(\frac{1}{x}\right) = f'(x) - 2x\cos\frac{1}{x}$ et que $\lim_{x\to 0} 2x\cos\frac{1}{x} = 0$, on a par différence de limites, $\lim_{x\to 0} \sin\left(\frac{1}{x}\right) = 0$, ce qui est faux car $\lim_{x\to 0^+} \sin\left(\frac{1}{x}\right) = \lim_{X\to +\infty} \sin(X)$ qui n'existe pas.

III Pour terminer

Exercice 5 On note $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} . Soit $n \in \mathbb{N}$. On note f_n et g_n les fonctions définies sur \mathbb{R} par :

$$f_n(x) = \cos(nx)$$
 et $g_n(x) = \cos^n(x)$.

1. Démontrer par récurrence que la famille $(f_0, f_1, ..., f_n)$ est une famille libre de E (indication : si $\forall x \in \mathbb{R}, \ \sum_{p=0}^{n+1} a_p \cos px = 0$, montrer que $\sum_{p=0}^{n+1} p^2 a_p \cos px = 0$ puis que $\sum_{p=0}^{n} ((n+1)^2 - p^2) a_p \cos px = 0$).

Pour $n \in \mathbb{N}$, on pose $f_n : x \mapsto \cos(nx)$. Montrer par récurrence que $(f_0, f_1, ..., f_n)$ est une famille libre de $\mathcal{F}(\mathbb{R}, \mathbb{R})$ (indication : si $\forall x \in \mathbb{R}, \sum_{p=0}^{n+1} a_p \cos px = 0$, montrer que $\sum_{p=0}^{n+1} p^2 a_p \cos px = 0$ puis que $\sum_{p=0}^{n} ((n+1)^2 - p^2) a_p \cos px = 0$).

La fonction f_0 n'étant pas la fonction nulle, la famille (f_0) constituée d'un seul vecteur non nul est libre.

Soit $n \in \mathbb{N}$ tel que la famille (f_0, \ldots, f_n) est libre. Montrons que la famille $(f_0, \ldots, f_n, f_{n+1})$ est libre.

Soit a_0, \ldots, a_{n+1} des réels tels que $a_0 f_0 + \ldots + a_{n+1} f_{n+1} = 0$ (*). Pour tout $p \in \mathbb{N}$, la fonction f_p est de classe C^{∞} sur \mathbb{R} , donc la combinaison linéaire $a_0 f_0 + \ldots + a_{n+1} f_{n+1}$ aussi. De plus pour tout $x \in \mathbb{R}$, on a $f_p''(x) = -p^2 \cos(px)$, donc en dérivant deux fois la combinaison linéaire $a_0 f_0 + \ldots + a_{n+1} f_{n+1} = 0$, on obtient que $\sum_{p=0}^{n+1} p^2 a_p f_p = 0$. Comme $a_0 f_0 + \ldots + a_{n+1} f_{n+1} = 0$, en multipliant cette équation par (n+1) et en lui soustrayant la relation précédente, on obtient que $\sum_{p=0}^{n} ((n+1)^2 - p^2) a_p f_p = 0$. Mais alors d'après HR(n), (f_0, \ldots, f_n) est libre et donc pour tout $p \in [0, n]$, $((n+1)^2 - p^2) a_p = 0$ et donc $a_p = 0$ car $(n+1)^2 - p^2 \neq 0$. La relation (*) devient alors $a_{n+1} f_{n+1} = 0$ et donc $a_{n+1} = 0$ car f_{n+1} n'est pas la fonction nulle.

On a donc bien $a_0 = \cdots = a_n = a_{n+1} = 0$ et donc la famille $(f_0, \ldots, f_n, f_{n+1})$ est libre.

2. Démontrer que la famille $(g_0, g_1, ..., g_n)$ est libre.

Soit a_0, \ldots, a_{n+1} des réels tels que $a_0g_0 + \ldots + a_ng_n = 0$. Alors :

$$\forall x \in \mathbb{R}, a_0 + a_1 \cos x + a_2 (\cos x) + \dots + a_n (\cos x)^n = 0.$$

Mais alors en considérant le polynôme $P=a_0+a_1X+a_2X^2+\cdots a_nX^n,$ a :

$$\forall x \in \mathbb{R}, P(\cos x) = 0.$$

Ainsi P s'annule sur [-1,1], donc une infinité de fois, donc il est nul et donc ses coefficients sont nuls. Ainsi $a_0 = \cdots = a_n = 0$ et donc la famille (g_0, \ldots, g_n) est libre.

Exercice 6 (Fonction coercive) Soit f une fonction réelle continue sur \mathbb{R} telle que

$$\lim_{+\infty} f = \lim_{-\infty} f = +\infty.$$

1. Soit $a \in \mathbb{R}$ tel que f(a) > 0. Démontrer qu'il existe un réel B > 0 tel que pour tout $x \in \mathbb{R}$, avec |x| > B, on a f(x) > f(a).

L'hypothèse sur les limites est équivalente à dire que $\lim_{|x|\to\infty} f(x) = +\infty$

Traduisons la limite:

$$\forall A > 0, \exists B > 0, \forall x \in \mathbb{R}, |x| \geqslant B \implies f(x) \geqslant A.$$

On prend alors A = |f(a)| + 1 > 0 et donc pour |x| > B, on a $f(x) \ge |f(a)| + 1 > f(a)$.

2. En déduire que f admet un minimum global sur \mathbb{R} .

D'une part pour tout $x \in \mathbb{R}$ avec $|x| \ge B$, on a $f(x) \ge f(a)$.

D'autre part, la fonction f est continue sur le segment [-B, B] donc f admet un minimum sur [-B, B] d'après le TBA. Ainsi, il existe $b \in [-B, B]$ tel que $\forall x \in [-B, B]$, on a $f(x) \ge f(b)$.

Conclusion: pour tout $x \in \mathbb{R}$, on a $f(x) \ge \min(f(a), f(b))$. Si f(a) > f(b), on pose c = a et on pose c = b sinon.

On vient de prouver que c est un minimum global pour f.

3. Application : démontrer qu'une fonction polynomiale $P: \mathbb{R} \to \mathbb{R}$ non constante de degré pair n'est pas surjective.

Soit $P: \mathbb{R} \to \mathbb{R}$ non constante de degré pair. On peut supposer que son coefficient dominant est positif. Alors ses limites en $\pm \infty$ sont égales à $+\infty$. D'après la question précédente, P étant continue, P admet un minimum global en un réel c, donc $P(\mathbb{R}) \subset [f(c), +\infty[$, c'est-à-dire que P n'atteint pas toutes les valeurs réelles, donc P est non surjective.

4. En déduire les fonctions polynomiales $P: \mathbb{R} \to \mathbb{R}$ surjectives.

Si P est constant, $P: \mathbb{R} \to \mathbb{R}$ est non surjective.

Si P est de degré impair, pour tout réel b, on pose g(x) = P(x) - b. La fonction g est polynomiale de degré impair, donc ses limites en $\pm \infty$ sont de signe différent, donc d'après le TVI g s'annule, donc P prend la valeur b, donc $P: \mathbb{R} \to \mathbb{R}$ est surjective.