Année scolaire 2024-2025

MPSI

Corrigé du DS de MATHÉMATIQUES n°2 Samedi 28 septembre 2024

Durée de l'épreuve : 4 heures de 8h à 12h00 Professeur : M. de Saint Julien Les calculatrices sont interdites. Les copies illisibles ou mal présentées seront pénalisées.

I Exercices

Exercice 1 Calculer les sommes suivantes :

1. $S = 3^{20} + 3^{22} + 3^{24} + \dots + 3^{98} + 3^{100} = (3^2)^{10} + (3^2)^{11} + (3^2)^{12} + \dots + (3^2)^{49} + (3^2)^{50} = \frac{9^{10} - 9^{51}}{1 - 9}$ car S est une somme géométrique de raison $3^2 = 9$.

2.
$$\sum_{k=0}^{n} (k+n) = \sum_{k=0}^{n} k + \sum_{k=0}^{n} n = \frac{n(n+1)}{2} + n(n+1) = n(n+1) \left(\frac{1}{2} + 1\right) = \frac{3n(n+1)}{2}$$
.

3. On fait dans la deuxième somme le changement de variable k = i + 1

$$\sum_{k=5}^{100} k^3 - \sum_{i=3}^{98} (i+1)^3 = \sum_{k=5}^{100} k^3 - \sum_{k=4}^{99} (k)^3$$

$$= \sum_{k=5}^{99} k^3 + 100^3 - (\sum_{k=5}^{99} (k)^3 + 4^3)$$

$$= 100^3 - 4^3 = 10000000 - 64$$

$$= 999936.$$

4. On a en posant i = k - 1:

$$\sum_{k=0}^{2n} {2n \choose k-1} 5^5 = \sum_{i=1}^{2n-1} {2n \choose i} 5^{i+1} = 5 \sum_{i=0}^{2n-1} {2n \choose i} 5^i$$

$$= 5 \left(\sum_{i=0}^{2n} {2n \choose i} 5^i - 5^{2n} \right)$$

$$= 5 ((5+1)^{2n} - 5^{2n}) = 5 (6^{2n} - 5^{2n})$$

Exercice 2 (Trigonométrie) Les questions sont indépendantes.

1.

$$\sin 3x = \sin x \iff (3x = x + 2k\pi, \ k \in \mathbb{Z}) \quad \text{ou} \quad (3x = \pi - x + 2k\pi, \ k \in \mathbb{Z})$$

$$\iff (x = k\pi, \ k \in \mathbb{Z}) \quad \text{ou} \quad \left(x = \frac{\pi}{4} + k\frac{\pi}{2}, \ k \in \mathbb{Z}\right)$$

Les solutions dans $\left[0, \frac{3\pi}{2}\right]$ sont donc (il y en a 5) :

$$0, \pi, \frac{\pi}{4}, \frac{\pi}{4} + \frac{\pi}{2}, \frac{\pi}{4} + \pi$$

2. Calculer $\int_0^{\frac{\pi}{2}} \cos 3x \cos 2x \, dx$ (on pourra utiliser une formule de linéarisation).

D'après la formule de linéarisation (10), on a :

$$\cos(3x)\cos(2x) = \frac{1}{2}\left(\cos(3x+2x) + \cos(3x-2x)\right) = \frac{\cos 5x + \cos x}{2}.$$

Ainsi

$$\int_0^{\frac{\pi}{2}} \cos 3x \cos 2x \, dx = \int_0^{\frac{\pi}{2}} \frac{\cos 5x + \cos x}{2} \, dx$$

$$= \frac{1}{2} \left(\int_0^{\frac{\pi}{2}} \cos 5x \, dx + \int_0^{\frac{\pi}{2}} \cos x \, dx \right)$$

$$= \frac{1}{2} \left(\left[\frac{\sin(5x)}{5} \right]_0^{\frac{\pi}{2}} + \left[\sin(x) \right]_0^{\frac{\pi}{2}} \right)$$

$$= \frac{1}{2} \left(\frac{1}{5} + 1 \right) = \frac{3}{5}.$$

3. Déterminer une valeur exacte de $\cos \frac{\pi}{12}$.

Le nombre $\frac{\pi}{12}$ est la moitié de $\frac{\pi}{6}$ dont on connaît le cosinus. Ainsi d'après la formule (8) utilisée avec $x=\frac{\pi}{12}$, on a : $\cos\frac{\pi}{3}=\cos\frac{2\pi}{6}=2\cos^2\frac{\pi}{6}-1$, d'où

$$\cos^2 \frac{\pi}{12} = \frac{\cos \frac{\pi}{6} + 1}{2} = \frac{1}{2} \left(\frac{\sqrt{3}}{2} + 1 \right) = \frac{\sqrt{3} + 2}{4}.$$

Ainsi comme $\cos \frac{\pi}{12} \geqslant 0$ car $\frac{\pi}{12} \in [0, \frac{\pi}{2}]$, on a

$$\cos\frac{\pi}{12} = \pm\sqrt{\frac{\sqrt{3}+2}{4}} = \sqrt{\frac{\sqrt{3}+2}{4}}.$$

Exercice 3 (Calcul de sommes)

1. Démontrer que pour tous entiers n et p vérifiant 0 , on a

$$\binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}.$$

2. En déduire la somme suivante :

(a)
$$\sum_{k=0}^{n} k \binom{n}{k}$$

Exercice 4 (Questions en vrac) Les questions sont indépendantes.

1. Donner la dérivée de la fonction f définie par $f(x) = \ln(\ln(\ln(x)))$ après avoir justifié sur quel intervalle était dérivable la fonction.

Pour que f(x) ait un sens, on doit avoir x > 0, $\ln x > 0$ et $\ln(\ln x) > 0$.

$$\ln(\ln x) > 0 \iff \ln x > 1 \iff x > e.$$

Ainsi f est dérivable sur $]e, +\infty[$ par composée.

De plus, on a:

$$\forall x \in]e, +\infty[, f'(x) = \frac{1}{\ln(\ln x)} \times \frac{1}{\ln x} \times \frac{1}{x}.$$

2. Calculer en utilisant un taux de variations $\lim_{x\to 1} \frac{x^5-1}{x-1}$.

C'est la limite du taux d'accroissement en 1 de la fonction f définie par $f(x) = x^5$. Comme f est dérivable en 1, cette limite est égale à f'(1) = 5 car $f'(x) = 5x^4$.

3. Soit f la fonction définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$. Existe-t-il une abscisse a telle que la tangente à la courbe de f au point d'abscisse a passe par le point M de coordonnées (0,10)?

II Un petit problème : somme alternée des inverses des entiers impairs

Le but de l'exercice est d'estimer la somme suivante :

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots$$

On pose $I = \left] \frac{-\pi}{2}, \frac{\pi}{2} \right[$ et on note tan la fonction tangente définie pour $x \in I$ par :

$$\tan x = \frac{\sin x}{\cos x}.$$

1. Justifier que la fonction tangente ainsi définie est dérivable sur I, et exprimer $\tan'(x)$ en fonction de $\tan x$ pour tout $x \in I$.

Comme cos ne s'annule pas sur I, tan est bien définie sur I. Elle est de plus dérivable sur I, comme quotient de fonctions dérivables.

Pour $x \in I$, on a :

$$\tan'(x) = \frac{\sin'(x)\cos x - \cos'(x)\sin x}{\cos^2 x} = \frac{\cos(x)\cos x - (-\sin x)\sin x}{\cos^2 x}$$
$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{\cos^2 x}{\cos^2 x} + \frac{\sin^2 x}{\cos^2 x}$$
$$= 1 + \tan^2 x$$

2. En déduire que pour tout $x \in \left[0, \frac{\pi}{4}\right]$, on a $0 \leqslant \tan x \leqslant 1$.

On en déduit que la dérivée de tan est positive et donc tan est croissante sur I, et donc en particulier sur $\left[0,\frac{\pi}{4}\right]$. On a donc pour tout $x\in\left[0,\frac{\pi}{4}\right]$, $0\leqslant x\leqslant\frac{\pi}{4}$ qui implique tan $0\leqslant\tan x\leqslant\tan\frac{\pi}{4}$, d'où $0\leqslant\tan x\leqslant1$.

On pose pour tout $n \in \mathbb{N}$,

$$u_n = \int_0^{\frac{\pi}{4}} \tan^{2n}(x) \, \mathrm{d}x.$$

3. Démontrer par un calcul de primitive que pour tout $k \in \mathbb{N}$, on a :

$$\int_0^{\frac{\pi}{4}} (1 + \tan^2 x) \tan^{2k}(x) \, \mathrm{d}x = \frac{1}{2k+1}.$$

On remarque que $(1 + \tan^2 x) \tan^{2k}(x) = \tan^{2k}(x) \times \tan'(x)$, c'est donc presque «la dérivée» de $\tan^{2k+1} x$. En effet, on rappelle que si u est une fonction dérivable et $n \in \mathbb{N}^*$, la fonction composée u^n est dérivable et a pour dérivée $nu^{n-1} \times u'$ et donc une primitive de $u^n \times u'$ est la fonction $\frac{u^{n+1}}{n+1}$. Ici $u = \tan$ et n = 2k+1, la fonction $x \mapsto (1 + \tan^2 x) \tan^{2k}(x)$ a donc pour primitive $F: x \mapsto \frac{1}{2k+1} \tan^{2k+1}(x)$.

On a donc

$$\int_0^{\frac{\pi}{4}} (1 + \tan^2 x) \tan^{2k}(x) dx = \left[\frac{\tan^{2k+1}(x)}{2k+1} \right]_0^{\frac{\pi}{4}} = \frac{1}{2k+1} (1-0) = \frac{1}{2k+1}.$$

4. En déduire que pour tout $n \in \mathbb{N}$, on a :

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} = \frac{\pi}{4} + (-1)^n u_{n+1}.$$

Soit $k \in \mathbb{N}$. Remarquons déjà que :

$$\int_0^{\frac{\pi}{4}} (1 + \tan^2 x) \tan^{2k}(x) dx = \int_0^{\frac{\pi}{4}} (\tan^{2k}(x) + \tan^{2k+2}(x))$$
$$= \int_0^{\frac{\pi}{4}} \tan^{2k}(x) dx + \int_0^{\frac{\pi}{4}} \tan^{2(k+1)}(x) dx$$
$$= u_k + u_{k+1}$$

On a aussi $u_0 = \int_0^{\frac{\pi}{4}} \tan^0(x) dx = \int_0^{\frac{\pi}{4}} 1 dx = \frac{\pi}{4}$.

D'après la question précédente,

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} = \sum_{k=0}^{n} (-1)^k \int_0^{\frac{\pi}{4}} (1 + \tan^2 x) \tan^{2k}(x) dx$$

$$= \sum_{k=0}^{n} (-1)^k (u_k + u_{k+1})$$

$$= \sum_{k=0}^{n} ((-1)^k u_k - (-1)^{k+1} u_{k+1}) \operatorname{car} (-1)^k = (-1)^k (-1)^2 = -(-1)^{k+1}$$

$$= (-1)^0 u_0 - (-1)^{n+1} u_{n+1} \operatorname{par} \text{ t\'elecopage}$$

$$= \frac{\pi}{4} + (-1)^n u_{n+1}$$

5. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

Soit $n \in \mathbb{N}$. On a

$$u_{n+1} - u_n = \int_0^{\frac{\pi}{4}} \tan^{2(n+1)}(x) dx - \int_0^{\frac{\pi}{4}} \tan^{2n}(x) dx$$
$$= \int_0^{\frac{\pi}{4}} \tan^{2(n+1)}(x) - \tan^{2n}(x) dx$$
$$= \int_0^{\frac{\pi}{4}} \underbrace{\tan^{2n}(x)}_{\geqslant 0} \underbrace{(\tan^2(x) - 1)}_{\leqslant 0} dx$$

En effet, pour $x \in \left[0, \frac{\pi}{4}\right]$, on a vu que $\tan x \in [0, 1]$, donc $\tan^2 x \leqslant 1$ et donc $\tan^2(x) - 1 \leqslant 0$. On en déduit que $u_{n+1} - u_n$ est l'inégrale sur $\left[0, \frac{\pi}{4}\right]$, d'une fonction négative, elle est donc négative, ainsi $u_{n+1} - u_n \leqslant 0$, ce qui prouve que la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante.

6. En déduire en considérant $u_n + u_{n+1}$ que pour tout $n \in \mathbb{N}$, on a :

$$0 \leqslant u_{n+1} \leqslant \frac{1}{4n+2}.$$

Soit $n \in \mathbb{N}$. Déjà $u_{n+1} \geqslant 0$ car c'est l'intégrale entre 0 et $\frac{\pi}{4}$ d'une fonction positive. On a ensuite déjà vu que $u_n + u_{n+1} = \frac{1}{2n+1}$, d'où par décroissance, on a $u_{n+1} \leqslant u_n$ et donc $2u_{n+1} \leqslant u_n + u_{n+1} = \frac{1}{2n+1}$, ce qui donne

$$u_{n+1} \leqslant \frac{1}{2} \times \frac{1}{2n+1} = \frac{1}{4n+2}.$$

7. En déduire la limite l lorsque n tend vers $+\infty$ de

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1}.$$

Comme $\frac{1}{4n+2}$ tend vers 0, on en déduit par le théorème des gendarmes que u_{n+1} tend vers 0. On a donc aussi $(-1)^n u_{n+1}$ qui tend vers 0 car $|(-1)^n u_{n+1}| = u_{n+1}$.

Ainsi comme on a vu que $\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} = \frac{\pi}{4} + (-1)^n u_{n+1}$, on conclut que

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \text{ tend vers } \frac{\pi}{4}.$$

On vient de démontrer la jolie formule :

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}.$$

III S'il reste du temps

Exercice 5 On pose pour $n \in \mathbb{N}$,

$$u_n = \sin\left((2+\sqrt{3})^n\pi\right).$$

- 1. Soit $n \in \mathbb{N}$. Démontrer que le nombre $k_n = (2 + \sqrt{3})^n + (2 \sqrt{3})^n$ est un entier.
- **2.** En déduire que la suite (u_n) converge.