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Corrigé du DM n°3 pour mardi 15/10/2025

Le devoir doit être rédigé sur des copies doubles.
Les copies dont les résultats ne sont pas souli-
gnés ou encadrés ne seront pas corrigées.

Objectif : traiter au moins deux exercices.

1 Parcours sécurisé

Exercice 1 (Changer d’écriture) (3 points) On pose Z =
1
2(
√

6 + i
√

2)
1− i .

1. On a Z =
1
2(
√

6 + i
√

2)
1− i =

1
2(
√

6 + i
√

2)(1 + i)
12 + (−1)2 = (

√
6−
√

2) + i(
√

6 +
√

2)
4 .

2. Le module de 1
2(
√

6 + i
√

2) vaut 1
2
√

6 + 2 =
√

2. On note θ un de ses arguments. On a
cos θ = x

r
=
√

6
2
√

2 =
√

3
2 et sin θ = y

r
=
√

2
2
√

2 = 1
2 . D’où θ = π

6 .

Ainsi 1
2(
√

6 + i
√

2) =
√

2e iπ6 . De même 1− i =
√

2e−iπ
4 .

Ainsi Z =
√

2e
iπ
6

√
2e

−iπ
4

= e iπ6 −−iπ
4 = e i5π12 . D’où Z = e i5π12 .

3. En prenant les parties réelles de l’écriture algébrique et de l’écriture exponentielle de Z,
on a

cos 5π
12 =

√
6−
√

2
4 et sin 5π

12 =
√

6 +
√

2
4 .

Exercice 2 (Calcul de cos(2π
5 )) On pose S =

4∑
k=0

ei 2kπ
5 .

Pour k ∈ {, . . . , 4}, on pose wk = e
2ikπ

5 .

1. Démontrer que S = 0.
C’est une somme géométrique de raison e 2iπ

5 . Ainsi

S =
1−

(
e 2iπ

5
)5

1− e 2iπ
5

= 1− ei2π

1− e 2iπ
5

= 1− 1
1− e 2iπ

5
= 0.

2. Déterminer un réel a tel que S = 1 + a cos(2π
5 ) + a cos(4π

5 ).
Un schéma permet de pressentir, que w1 et w4 sont conjugués ainsi que w2 et w3. Les
calculs suivants le prouvent.
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On a

w1 = e 2iπ
5

w2 = e 4iπ
5

w3 = e 6iπ
5 = ei( 6π

5 −2π) = ei( 6π
5 −

10π
5 ) = e−i( 4π

5 )

w4 = e 8iπ
5 = ei( 8π

5 −2π) = ei( 8π
5 −

10π
5 ) = e−i( 2π

5 )

On a donc

1 + w1 + w2
1 + w3

1 + w4
1 = 1 + e 2iπ

5 + e 4iπ
5 + e−i( 4π

5 ) + e−i( 2π
5 )

= 1 + e 2iπ
5 + e−i( 2π

5 )︸ ︷︷ ︸+e 4iπ
5 + e−i( 4π

5 )︸ ︷︷ ︸
= 1 + 2 cos 2π

5 + 2 cos 4π
5

= 1 + 2 cos 2π
5 + 2 cos(2× 2π

5 )

= 1 + 2 cos 2π
5 + 2

(
2 cos2 2π

5 − 1
)

= 1 + 2 cos 2π
5 + 4 cos2 2π

5 − 2

= −1 + 2 cos 2π
5 + 4 cos2 2π

5

Ceci montre d’après la question 1. que cos 2π
5 est une racine du polynôme 4X2 + 2X − 1.

Or ce polynôme a pour racines −1±
√

5
4 . Mais −1−

√
5

4 < 0 tandis que cos 2π
5 > 0 car

2π
5 ∈ [0, π2 ]. Ainsi on a

cos 2π
5 = −1 +

√
5

4 .

2 Parcours plus difficile

Exercice 3 On pose
G = {z ∈ C | ∃n ∈ N∗, zn = 1}.

1. Soit z et z′ dans G. Il existe donc deux entiers n et p dans de N∗ tels que zn = 1 et
z′p = 1. Mais alors (zz′)np = (zn)p(z′p)n = 1p × 1n = 1, donc zz′ ∈ G puisque np ∈ N∗.

2. Soit z et z′ dans G. A-t-on z + z′ ∈ G ? Remarquons déjà que si z ∈ G, il existe n ∈ N∗
tel que zn = 1, et donc |zn| = 1, donc |z|n = 1, donc |z| = 1.
Les nombres 1 et 1 sont dans G mais 1 + 1 = 2 /∈ G puisque |2| = 2 6= 1.

3. Soit z ∈ C. Démontrer que :

z ∈ G ⇐⇒ ∃r ∈ Q, z = eirπ.
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Exercice 4 (Étude d’une suite récurrente de nombres complexes) Soit (zn)n∈N la suite

de nombres complexes définie par zn+1 = zn + |zn|
2 pour n ∈ N et de premier terme z0 ∈ C.

1. Placer sur votre copie un pointM quelconque. On note z0 son affixe. Placer ensuite le point
N d’affixe |z0|. Expliquer alors comment on construit le point M ′ d’abscisse z1 = z0+|z0|

2 .

2. On suppose que z0 ∈ R. Que vaut alors zn pour tout n > 1 ?
Si z0 ∈ R+, alors z0 = |z0| d’où z1 = z0. Par récurrence immédiate, on a donc zn = z0
pour tout n > 1 (la suite est constante).
Si z0 ∈ R−, alors z0 = −|z0| d’où z1 = 0. Mais alors z2 = 0 et par récurrence immédiate,
on a donc zn = 0 pour tout n > 1.
Ainsi si z0 ∈ R, la suite (zn) est stationnaire.

Jusqu’à la fin de l’exercice, on suppose que z0 n’appartient pas à R. On note alors r0 son
module et θ0 ∈]− π, π] son argument principal.

3. Justifier que θ0 ∈]− π, π] \ {0}. Comme z0 n’est pas réel, son argument θ0 ne peut valoir
0.

4. Soit z ∈ C \R. Démontrer que z+|z|
2 ∈ C \R. En déduire que pour tout n ∈ N, le nombre

zn est non nul.
Si z ∈ C \ R, alors f(z) = z+|z|

2 ∈ C \ R. En effet, montrons la contraposée : si f(z) ∈ R,
alors z+ |z| ∈ R et comme |z| ∈ R, on a z = z+ |z|− |z| ∈ R (une différence de deux réels
est un réel). D’où la contraposée. Ainsi comme z0 ∈ C \ R, on a z1 = f(z0) ∈ C \ R, et
donc par récurrence immédiate pour tout n > 1, zn ∈ C \ R . En particulier zn est non
nul.

On note alors rn son module et θn ∈]− π, π] son argument principal.

5. Démontrer que pour tout n ∈ N, on a :

rn+1 = rn cos
(
θn
2

)
et θn+1 = θn

2 .

On a

zn+1 = zn + |zn|
2 = rneiθn + rn

2 = rn(1 + eiθn)
2 = rn

2 ei
θn
2 (e−i

θn
2 + ei

θn
2 ) = rnei

θn
2 cos θn2 .

Comme θn ∈]− π, π[, θn
2 ∈]− π

2 ,
π
2 [, donc cos θn

2 > 0 ainsi rn cos θn
2 est le module de zn+1

et θn
2 est l’argument principal de zn+1. Par unicité, on a donc

rn+1 = rn cos θn2 et θn+1 = θn
2 .

Une récurrence immédiate montre alors que

θn+1 = (1
2)nθ0 et rn = r0

n−1∏
k=0

cos θk2 = r0

n−1∏
k=0

cos θ0

2k+1 = r0

n∏
k=1

cos
(
θ0

2k

)
.
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6. Démontrer que pour tout θ ∈]− π, π[\{0}, et pour tout n ∈ N∗, on a :

n∏
k=1

cos
(
θ

2k

)
= cos

(
θ

21

)
× · · · × cos

(
θ

2n

)
= sin θ

2n sin
(
θ

2n
) .

C’est un PACMAN ! On va utiliser sin x cosx = sin 2x
2 . Soit θ ∈]− π, π[\{0}.

sin θ

2n
n∏
k=1

cos
(
θ

2k

)
=

n−1∏
k=1

cos
(
θ

2k

)
× cos θ

2n sin θ

2n︸ ︷︷ ︸
sin θ

2n−1
2

= . . . cos θ2 × (1
2)n−1 sin θ2 = (1

2)n sin θ.

Comme θ ∈]− π, π[\{0}, sin θ
2n 6= 0, d’où le résultat.

7. En déduire que les suites (rn) et (θn) convergent, préciser leur limite.
La suite géométrique (θn) de raison 1

2 tend vers 0.

D’après le résultat précédent, rn = r0
sin θ0

2n sin
(
θ0
2n
) = r0

sin θ0

θ0 ×
sin θ0

2n
θ0
2n

.

Or lim
x→0

sin x
x

= 1 car sin x ∼ x en 0, donc lim
n→+∞

sin θ0
2n

θ0
2n

= 1.

Ainsi lim
n→+∞

rn = r0
sin θ0

θ0
et donc lim

n→+∞
zn = r0

sin θ0

θ0
.


