Programme de colle de la semaine n°5 du 01/10 au 05/10

1 Questions de cours

- 1. Composée d'une fonction croissante par une fonction décroissante.
- 2. la limite de $u_n = \left(1 + \frac{1}{n}\right)^n$ vaut e, en utilisant la limite de $\lim_{x\to 0} \frac{\ln(x+1)}{x}$ à l'aide d'un taux d'accroissement.
- 3. Si f est dérivable sur I et est convexe, sa courbe est au-dessus de ses tangentes.
- 4. tan est convexe sur $\left[0, \frac{\pi}{2}\right]$, on en déduit que pour $x \in \left[0, \frac{\pi}{2}\right]$, $\tan x \geqslant x$.
- 5. $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$ (à l'aide de l'inégalité $\ln x \leqslant 2\sqrt{x}$ qui s'obtient par $\frac{\ln(x)}{2} = \ln(\sqrt{x}) \leqslant \sqrt{x} 1 \leqslant \sqrt{x}$).
- 6. Asymptote oblique d'une fraction rationnelle de degré 1 par division euclidienne, par exemple $g(x) = \frac{5x^4 3x + 2}{2x^3 4x^2 + 1}$.

2 Exercices sur «trigo et étude de fonctions»

Chapitre III: Kit de trigonométrie

Voir ce document pour les exercices traités : http://desaintar.free.fr/resumes/kit_de_trigonometrie.pdf

- 1. cos et sin:
 - formules d'addition, de linéarisation, de «délinéarisation» $\cos p + \cos q$, équation du type $\cos a = \cos b$ ou $\sin a = \sin b$
 - point de vue fonctionnel : parité, périodicité, variations, dérivée
- 2. Tangente
 - définition, impaire, π -périodique, dérivée, variations
 - formule d'addition

Attention : je n'ai pas traité les formules qui expriment $\cos t$ et $\sin t$ en fonction de $x = \tan \frac{t}{2}$ (je le ferai en intégration).

Chapitre IV: Pour démarrer en analyse

2.1 Généralités sur les fonctions

- 1. Vocabulaire : image, antécédent, ensemble d'arrivée, ensemble image
- 2. Représentation graphique d'une fonction
- 3. Symétries : parité, périodicité, centre de symétrie
- 4. Composée de fonctions

2.2 Monotonie

Définitions, composée de fonctions monotones, somme de fonctions croissantes...

2.3 L'outil dérivation

- 1. Définitions : nombre dérivé en a, fonction dérivée, tangente en un point.
- 2. Opérations sur les dérivées, dérivée d'une composée
- 3. Caractérisation de la monotonie pour les fonctions dérivables
- 4. Dérivée n-ième, stabilité par CL, produit, quotient, composée. Formule de dérivation de Leibniz
- 5. Définition provisoire de fonction convexe : fonction dérivable de dérivée croissante. Sa courbe est au-dessus des tangentes.

2.4 Notion d'équivalents

Définition, symétrie, transitivité. Equivalents usuels en 0, cas des polynômes. On peut faire des produits et des quotients d'équivalents.

2.5 Allure d'une courbe de fonction tendant vers l'infini

Différentes branches infinies : asymptotes à une droite, branches paraboliques. Comparaison à la fonction étalon $x \mapsto x$ par la limite de $\frac{f(x)}{x}$.

Attention : ne pas poser encore de fonctions hyperboliques, ni de fonctions puissances avec des exposants non entiers. Ou alors définir que $x^{\alpha} = \exp(\alpha \ln x)$

Fin du programme de la semaine

3 Autour du théorème des valeurs intermédiaires

- 1. Notion de continuité. Dérivable implique continue
- 2. Théorème des valeurs intermédiaires.

4 Quelques fonctions usuelles

- 1. Les fonctions polynomiales et fonctions rationnelles
- 2. Les deux célèbres fonctions réciproques : ln et exp. Inégalités de convexité $\ln x \leqslant x-1$ et $\mathrm{e}^x \geqslant x+1$.
- 3. Fonctions puissances. Définition de $x^{\alpha} = \exp(\alpha \ln x)$ avec x > 0 et α réel. Règles de calculs. Etude des fonctions puissances $x \mapsto x^{\alpha}$. Croissances comparées.
- 4. Les fonctions hyperboliques (mais pas les réciproques qui ne sont pas au programme).

Attention:

• ne pas parler encore de bijection et de fonction réciproque. Traité dans un prochain chapitre

,